Controlled drop emission by wetting properties in driven liquid filaments.
نویسندگان
چکیده
The controlled formation of micrometre-sized drops is of great importance to many technological applications. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.
منابع مشابه
Wetting and dewetting processes in the axial retraction of liquid filaments.
We study the hydrodynamic mechanisms involved in the motion of the contact line formed at the end region of a liquid filament laying on a planar and horizontal substrate. Since the flow develops under partially wetting conditions, the tip of the filament recedes and forms a bulged region (head) that subsequently develops a neck region behind it. Later the neck breaks up leading to a separated d...
متن کاملNot spreading in reverse: The dewetting of a liquid film into a single drop
Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the...
متن کاملWetting failure of hydrophilic surfaces promoted by surface roughness
Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the ...
متن کاملUtilization of Cavity Vortex To Delay the Wetting Transition in One-Dimensional Structured Microchannels.
Frictional resistance across rough surfaces depends on the existence of slip on the liquid-gas interface; therefore, prolonging the existence of liquid-gas interface becomes relevant. In this work, we explore manipulation of the cavity shape in order to delay the wetting transition. We propose that liquid-driven vortices generated in the air cavity dissipate sufficient energy to delay the Cassi...
متن کاملWetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study.
A three-dimensional lattice Boltzmann method (LBM) has been developed for multiphase (liquid and vapor) flows with solid particles suspended within the liquid phases. The method generalizes our recent two-dimensional model [A. Joshi and Y. Sun, Phys. Rev. E 79, 066703 (2009)] to three dimensions, extends the implicit scheme presented therein to include interparticle forces and introduces an eva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature materials
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2011